o
    d+                     @  s*  d Z ddlmZ ddlmZmZmZ ddlZddlm	Z	 ddl
mZ ddlmZmZ ddlmZ dd	lmZ dd
lmZmZmZmZmZmZmZmZmZmZ ddlm Z  ddl!m"Z" ddl#m$  m%Z& erqddl!m'Z' ddl(m)Z) dZ*d*ddZ+dd Z,d+ddZ-d,ddZ.			d-d.d&d'Z/d(d) Z0dS )/zH
Table Schema builders

https://specs.frictionlessdata.io/table-schema/
    )annotations)TYPE_CHECKINGAnycastN)loads)	timezones)DtypeObjJSONSerializable)find_stack_level)	_registry)
is_bool_dtypeis_categorical_dtypeis_datetime64_dtypeis_datetime64tz_dtypeis_extension_array_dtypeis_integer_dtypeis_numeric_dtypeis_period_dtypeis_string_dtypeis_timedelta64_dtype)CategoricalDtype)	DataFrame)Series)
MultiIndexz1.4.0xr   returnstrc                 C  st   t | rdS t| rdS t| rdS t| st| st| r dS t| r&dS t| r,dS t| r2dS t	| r8dS dS )a  
    Convert a NumPy / pandas type to its corresponding json_table.

    Parameters
    ----------
    x : np.dtype or ExtensionDtype

    Returns
    -------
    str
        the Table Schema data types

    Notes
    -----
    This table shows the relationship between NumPy / pandas dtypes,
    and Table Schema dtypes.

    ==============  =================
    Pandas type     Table Schema type
    ==============  =================
    int64           integer
    float64         number
    bool            boolean
    datetime64[ns]  datetime
    timedelta64[ns] duration
    object          str
    categorical     any
    =============== =================
    integerbooleannumberdatetimedurationanystring)
r   r   r   r   r   r   r   r   r   r   )r    r$   P/app/.heroku/python/lib/python3.10/site-packages/pandas/io/json/_table_schema.pyas_json_table_type1   s"   r&   c                 C  s   t j| jj r:| jj}t|dkr!| jjdkr!tjdt d | S t|dkr8t	dd |D r8tjdt d | S | 
 } | jjdkrOt | jj| j_| S | jjpTd| j_| S )z?Sets index names to 'index' for regular, or 'level_x' for Multi   indexz-Index name of 'index' is not round-trippable.)
stacklevelc                 s  s    | ]}| d V  qdS Zlevel_N
startswith.0r   r$   r$   r%   	<genexpr>l   s    z$set_default_names.<locals>.<genexpr>z<Index names beginning with 'level_' are not round-trippable.)comZall_not_noner(   nameslennamewarningswarnr
   r"   copynlevelsZfill_missing_names)dataZnmsr$   r$   r%   set_default_namesc   s(   	r9   dict[str, JSONSerializable]c                 C  s   | j }| jd u rd}n| j}|t|d}t|r-|j}|j}dt|i|d< ||d< |S t|r9|jj	|d< |S t
|rQt|jrId|d< |S |jj|d< |S t|rZ|j|d	< |S )
Nvalues)r3   typeenumconstraintsorderedfreqUTCtzextDtype)dtyper3   r&   r   
categoriesr?   listr   r@   Zfreqstrr   r   Zis_utcrB   zoner   )ZarrrD   r3   fieldZcatsr?   r$   r$   r%   !convert_pandas_type_to_json_field{   s2   
	
rI   str | CategoricalDtypec                 C  s   | d }|dkr
dS |dkr|  ddS |dkr|  ddS |d	kr(|  dd
S |dkr.dS |dkrN|  dr?d| d  dS |  drLd| d  dS dS |dkrsd| v rfd| v rft| d d | d dS d| v rqt| d S dS td| )a  
    Converts a JSON field descriptor into its corresponding NumPy / pandas type

    Parameters
    ----------
    field
        A JSON field descriptor

    Returns
    -------
    dtype

    Raises
    ------
    ValueError
        If the type of the provided field is unknown or currently unsupported

    Examples
    --------
    >>> convert_json_field_to_pandas_type({"name": "an_int", "type": "integer"})
    'int64'

    >>> convert_json_field_to_pandas_type(
    ...     {
    ...         "name": "a_categorical",
    ...         "type": "any",
    ...         "constraints": {"enum": ["a", "b", "c"]},
    ...         "ordered": True,
    ...     }
    ... )
    CategoricalDtype(categories=['a', 'b', 'c'], ordered=True)

    >>> convert_json_field_to_pandas_type({"name": "a_datetime", "type": "datetime"})
    'datetime64[ns]'

    >>> convert_json_field_to_pandas_type(
    ...     {"name": "a_datetime_with_tz", "type": "datetime", "tz": "US/Central"}
    ... )
    'datetime64[ns, US/Central]'
    r<   r#   objectr   rC   Zint64r   Zfloat64r   boolr!   timedelta64r    rB   zdatetime64[ns, ]r@   zperiod[zdatetime64[ns]r"   r>   r?   r=   )rE   r?   z#Unsupported or invalid field type: )getr   registryfind
ValueError)rH   typr$   r$   r%   !convert_json_field_to_pandas_type   s4   )

rT   Tr8   DataFrame | Seriesr(   rL   primary_keybool | Noneversionc                 C  s  |du rt | } i }g }|r?| jjdkr7td| j| _t| jj| jjD ]\}}t|}||d< || q$n|t| j | j	dkrU| 
 D ]\}	}
|t|
 qHn|t|  ||d< |r| jjr|du r| jjdkrx| jjg|d< n| jj|d< n|dur||d< |rt|d< |S )	a  
    Create a Table schema from ``data``.

    Parameters
    ----------
    data : Series, DataFrame
    index : bool, default True
        Whether to include ``data.index`` in the schema.
    primary_key : bool or None, default True
        Column names to designate as the primary key.
        The default `None` will set `'primaryKey'` to the index
        level or levels if the index is unique.
    version : bool, default True
        Whether to include a field `pandas_version` with the version
        of pandas that last revised the table schema. This version
        can be different from the installed pandas version.

    Returns
    -------
    dict

    Notes
    -----
    See `Table Schema
    <https://pandas.pydata.org/docs/user_guide/io.html#table-schema>`__ for
    conversion types.
    Timedeltas as converted to ISO8601 duration format with
    9 decimal places after the seconds field for nanosecond precision.

    Categoricals are converted to the `any` dtype, and use the `enum` field
    constraint to list the allowed values. The `ordered` attribute is included
    in an `ordered` field.

    Examples
    --------
    >>> from pandas.io.json._table_schema import build_table_schema
    >>> df = pd.DataFrame(
    ...     {'A': [1, 2, 3],
    ...      'B': ['a', 'b', 'c'],
    ...      'C': pd.date_range('2016-01-01', freq='d', periods=3),
    ...     }, index=pd.Index(range(3), name='idx'))
    >>> build_table_schema(df)
    {'fields': [{'name': 'idx', 'type': 'integer'}, {'name': 'A', 'type': 'integer'}, {'name': 'B', 'type': 'string'}, {'name': 'C', 'type': 'datetime'}], 'primaryKey': ['idx'], 'pandas_version': '1.4.0'}
    Tr'   r   r3   fieldsN
primaryKeyZpandas_version)r9   r(   r7   r   zipZlevelsr1   rI   appendndimitemsZ	is_uniquer3   TABLE_SCHEMA_VERSION)r8   r(   rV   rX   schemarY   levelr3   Z	new_fieldcolumnsr$   r$   r%   build_table_schema   s8   8
rd   c                 C  s   t | |d}dd |d d D }t|d |d| }dd	 |d d D }d
| v r0td||}d|d v rc||d d }t|jjdkrX|jj	dkrVd|j_	|S dd |jjD |j_|S )a  
    Builds a DataFrame from a given schema

    Parameters
    ----------
    json :
        A JSON table schema
    precise_float : bool
        Flag controlling precision when decoding string to double values, as
        dictated by ``read_json``

    Returns
    -------
    df : DataFrame

    Raises
    ------
    NotImplementedError
        If the JSON table schema contains either timezone or timedelta data

    Notes
    -----
        Because :func:`DataFrame.to_json` uses the string 'index' to denote a
        name-less :class:`Index`, this function sets the name of the returned
        :class:`DataFrame` to ``None`` when said string is encountered with a
        normal :class:`Index`. For a :class:`MultiIndex`, the same limitation
        applies to any strings beginning with 'level_'. Therefore, an
        :class:`Index` name of 'index'  and :class:`MultiIndex` names starting
        with 'level_' are not supported.

    See Also
    --------
    build_table_schema : Inverse function.
    pandas.read_json
    )precise_floatc                 S  s   g | ]}|d  qS r3   r$   r.   rH   r$   r$   r%   
<listcomp>d  s    z&parse_table_schema.<locals>.<listcomp>r`   rY   r8   )columnsc                 S  s   i | ]	}|d  t |qS rf   )rT   rg   r$   r$   r%   
<dictcomp>g  s    z&parse_table_schema.<locals>.<dictcomp>rM   z<table="orient" can not yet read ISO-formatted Timedelta datarZ   r'   r(   Nc                 S  s   g | ]}| d rdn|qS r*   r+   r-   r$   r$   r%   rh   z  s    )
r   r   r;   NotImplementedErrorZastypeZ	set_indexr2   r(   r1   r3   )jsonre   tableZ	col_orderZdfZdtypesr$   r$   r%   parse_table_schema?  s*   $


rn   )r   r   r   r   )r   r:   )r   rJ   )TNT)
r8   rU   r(   rL   rV   rW   rX   rL   r   r:   )1__doc__
__future__r   typingr   r   r   r4   Zpandas._libs.jsonr   Zpandas._libs.tslibsr   Zpandas._typingr   r	   Zpandas.util._exceptionsr
   Zpandas.core.dtypes.baser   rP   Zpandas.core.dtypes.commonr   r   r   r   r   r   r   r   r   r   Zpandas.core.dtypes.dtypesr   Zpandasr   Zpandas.core.commoncorecommonr0   r   Zpandas.core.indexes.multir   r_   r&   r9   rI   rT   rd   rn   r$   r$   r$   r%   <module>   s4    0
2

K\